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In this paper two kinds of two-boson realizations of the polynomial angular
momentum algebra are obtained by generalizing the well known Jordan–Schwinger
realizations of the SU(2) and SU(1,1) algebras. Especially, for the Higgs algebra, an
unitary realization and two nonunitary realizations, together with the properties of
their respective acting spaces are discussed in detail. Furthermore, similarity transfor-
mations, which connect the nonunitary realizations with the unitary ones, are gained
by solving the corresponding unitarization equations. As applications, the dynamical
symmetry of the Kepler system in a two-dimensional curved space is studied and phase
operators of the Higgs algebra are constructed.
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1. Introduction

The boson realization (or boson expansion) of Lie algebra has played
a central role in the study of algebraic models for atomic [1], nuclear [2],
and molecular structures [3,4]. One of the most famous cases is the Jordan–
Schwinger realization of angular momentum in quantum mechanics, which, cor-
responding to the Lie algebra SU(2) or SO(3) [5], may be described by means
of the occupation number representation of the two-dimensional isotropic har-
monic oscillator [6].

In recent years, the polynomial angular momentum algebra (PAMA) and its
increasing applications in quantum problems have been the focus of very active
research. This kind of PAMA, spanned by three elements J µ (µ = +, −, 3),
has a coset structure h + v [7], where h is the Lie algebra U(1) generated by J3;
the remaining two elements J+, J− ∈ v transform according to a representation
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of U(1), and their commutator yields a polynomial function of order n in the
operator J3 ∈ U(1), i.e.,

[J3, J±] = ±J±, [J+, J−] =
n∑

i=0

Ci(J3)
i, (1)

where the coefficients Ci (i = 0, 1, . . . , n) are real constants. When C1 = 2 (or
−2) and C0 = Cj = 0 (j � 2), equation (1) goes back to the commutation rela-
tions satisfied by the angular momentum algebra SU(2) (or its noncompact type
SU(1,1)). Hence, the PAMA can be viewed as a type of polynomial deformation
of SU(2) (or SU(1,1)), or a type of nonlinear extension of U(1).

The first special case of the PAMA is the so-called Higgs algebra, which,
here denoted by H, was used by Higgs [8] to establish the existence of
additional symmetries for the isotropic oscillator and Kepler potentials in
a two-dimensional curved space. Later, Zhedanov [9] presented a connection
between the Higgs algebra H and the quantum group SUq(2). [10] Daskaloyannis
[11] and Bonatsos et al. [12,13] discussed the PAMA by means of the generalized
deformed oscillator, respectively, and Quesne [14] related it to the generalized
deformed parafermion. Junker and Roy [15] constructed the (nonlinear) coherent
states of H for the conditionally exactly solvable model with the radial potential
of harmonic oscillator, and Sunilkumar et al. [16] did for the quadrilinear boson
Hamiltonian describing four-photon process and showed [17] that the PAMA of
order (n1+n2+1) may be constructed by combining two given mutually commut-
ing PAMAs with their respective orders being n1 and n2. Recently, Beckers et al.
[18] and Debergh [19] realized H, which is seen as a spectrum generating algebra
in their method, by single-variable differential operators in the study of (quasi-)
exactly solvable problems, and also construct a special unitary two-boson realiza-
tion to study the Karassiov–Klimov Hamiltonian in the quantum optics. Ruan et
al. [20] studied indecomposable representations of the PAMA of quadratic type,
and then from these representations obtained its inhomogeneous boson realiza-
tions. In the present work we will study in detail for PAMA two-boson realiza-
tions, which are analogous to the well known Jordan–Schwinger realizations of
the SU(2) and SU(1,1) algebras [5], and some applications. In order to obtain
the explicit results, we shall restrict ourself to the Higgs algebra H.

This paper is arranged as follows. In section 2, some elementary results
of the Jordan–Schwinger realizations of SU(2) and SU(1,1) and of the irreduc-
ible unitary representations of H are briefly reviewed, respectively. In section 3,
two kinds of two-boson realizations of H are studied in detail, such as the uni-
tary realizations, the nonunitary realizations, and their respective acting spaces.
In section 4, we first discuss generally the unitarization equations satisfied by
the nonunitary realizations, then calculate the explicit expressions for the cor-
responding similarity transformations, which may relate the nonunitary realiza-
tions to the unitary ones. In section 5, as applications, by making use of the
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results obtained in section 3, the dynamical symmetry of the Kepler system in
the two-dimensional curved space is studied and the phase operators of H are
constructed. A simple discussion is given in the final section.

2. Notations and some elementary results

In this section, some elementary results, along with notations, to be used
later are briefly reviewed, such as the standard Jordan–Schwinger realizations of
the SU(2) and SU(1,1) algebras, the irreducible unitary representations of the
Higgs algebra H, and so on.

2.1. The Jordan–Schwinger realizations of SU(2) and SU(1,1)

Denote three generators of SU(2) and its noncompact type SU(1,1) by
{J+, J−, J3}, then their commutation relations may be written in a compact form

[J+, J−] = 2λJ3, [J3, J±] = ±J±, (2)

where λ = 1 for SU(2) and λ = −1 for SU(1,1).
In terms of the Jordan–Schwinger mapping [6], the generators of SU(2) and

SU(1,1) may be respectively realized by two pairs of mutually commuting boson
operators {ai, a+

i | i = 1, 2} (the annihilation operators ai are adjoint to the cre-
ation operators a+

i , i.e., ai = (a+
i )†, a+

i = (ai)
†) as

J+ = a+
1 a2,

J− = a1a
+
2 ,

J3 = 1
2(n̂1 − n̂2)

(3)

for SU(2), and

J+ = a+
1 a+

2 ,

J− = a1a2,

J3 = 1
2(n̂1 + n̂2 + 1)

(4)

for SU(1,1), where n̂i ≡ a+
i ai (i = 1, 2) are the corresponding particle number

operators, which, together with the boson operators {ai, a+
i }, satisfy the com-

mutation relations

[ai, a
+
j ] = δij ,

[n̂i , a
+
j ] = δij a

+
j ,

[n̂i , aj ] = −δij aj .

(5)
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Furthermore, the complete set of basis vectors of Fock space, F ≡ {|n1n2〉| n1,

n2 = 0, 1, 2, . . . }, may be constructed from the vacuum state |00〉 of the two-dimen-
sional harmonic oscillator by using the definition

|n1n2〉 = (a+
1 )n1(a+

2 )n2

√
n1!n2!

|00〉. (6)

In fact, these vectors are the common normalized eigenvectors of n̂1 and n̂2

belonging to eigenvalues n1 and n2 respectively, i.e.,

n̂i | . . . ni . . . 〉 = ni | . . . ni . . . 〉, i = 1, 2, (7)

and satisfy

ai | . . . ni . . . 〉 = √
ni | . . . ni − 1 . . . 〉,

a+
i | . . . ni . . . 〉 = √

ni + 1| . . . ni + 1 . . . 〉. (8)

Correspondingly, the common eigenvectors |jm〉 of the angular momentum
operators J2 and J3 may also be expressed in the Jordan–Schwinger representa-
tion as

|jm〉 = (a+
1 )j+m(a+

2 )j−m

√
(j + m)!(j − m)!

|00〉. (9)

Comparison between equations (9) and (6) leads immediately to

n̂i |jm〉 = [j − (−1)im]|jm〉, i = 1, 2, (10)

that is, the quantum numbers n1 and n2 are related to j and m by the equations
n1 = j + m and n2 = j − m.

2.2. The Higgs algebra H and its irreducible unitary representation

Taking C2 = Cj = 0 (j > 3) in equation (1), it follows that the three genera-
tors {J±, J3} of the Higgs algebra H satisfy the following commutation relations

[J3, J±] = ±J±, [J+, J−] = C1J3 + C3J 3
3 . (11)

In analogy with SU(2) [5], the Casimir invariant of H reads

C = 1
2(J+J− + J−J+) + ( 1

2C1 + 1
4C3

)
J 2

3 + 1
4C3J 4

3 , (12)

which commutes with the three generators of H, i.e.,

[C, J±] = [C, J3] = 0. (13)



D. Ruan / Two-boson realizations of the PAMA 421

It is worthy of reminding the readers that the constant C1 in equation (11)
is remained for convenience though it may become some fixed real number, say
q, by rescaling the generators, J± → √

q/C1J±.
Making use of the parallel treatment of angular momentum in quantum

mechanics [5], it is not difficult to obtain the following unitary representation of
H in the common eigenvectors |j̃ m̃〉 of the elements {C, J3}, with j̃ and m̃ label-
ling the eigenvalues of C and J3, respectively, [18,21]

〈j̃ m̃ + 1|J+|j̃ m̃〉 =
√

1
2
C1[j̃ (j̃ + 1) − m̃(m̃ + 1)] + 1

4
C3[j̃ 2(j̃ + 1)2 − m̃2(m̃ + 1)2],

〈j̃ m̃ − 1|J−|j̃ m̃〉 =
√

1
2
C1[j̃ (j̃ + 1) − m̃(m̃ − 1)] + 1

4
C3[j̃ 2(j̃ + 1)2 − m̃2(m̃ − 1)2],

〈j̃ m̃|J3|j̃ m̃〉 = m̃, (14)

〈j̃ m̃|C|j̃ m̃〉 = 1
2
C1j̃ (j̃ + 1) + 1

4
C3j̃

2(j̃ + 1)2.

Here we have adopted the same phase factor as the Condon–Shortley convention
of SU(2) so that the matrix elements of J± are real. In equation (14), j̃ may take
half-integers, i.e., 0, 1/2, 1, 3/2, . . . , and for the finite dimensional representation
with a fixed j̃ , the values that m may take, being a part of {−j̃ , −j̃ + 1, . . . , j̃},
are different for different C1’s and C3’s [21].

3. Two kinds of two-boson realizations of H

In this section, we will study two kinds of two-boson realizations of H,
which are analogous to the Jordan–Schwinger realizations of SU(2) and SU(1,1),
respectively.

3.1. The first kind of realizations

The Jordan–Schwinger realization (3) of SU(2) reminds us that the first
kind of two-boson realizations of H may be chosen in the following form

Ḃ(k,l)(J+) = ḟ (n̂1, n̂2)(a
+
1 )kal

2,

Ḃ(k,l)(J−) = ak
1(a

+
2 )lġ(n̂1, n̂2),

Ḃ(k,l)(J3) = ḣ(n̂1, n̂2),

(15)

where k and l are positive integers, ḟ (n̂1, n̂2), ġ(n̂1, n̂2) and ḣ(n̂1, n̂2), being the
operator functions of n̂1 and n̂2, have to be determined by the commutation rela-
tions (11) of H. For a fixed (k, l), the action of Ḃ(k,l)(J±) on some basis vector
|n1n2〉 of the boson Fock space F gives another basis vector |n1 ± k, n2 ∓ l〉.

The first equation of equation (11) requires that ḣ(n̂1, n̂2) satisfies the
simple two-variable difference equation
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ḣ(n̂1, n̂2) − ḣ(n̂1 − k, n̂2 + l) = 1. (16)

Its solution reads

ḣ(n̂1, n̂2) = n̂1

2k
− n̂2

2l
+ α, (17)

here α, being a real constant, needs further determining by considering the irre-
ducible representation of H given in section 2.2. Equation (17) clearly shows that
the two-boson realization (15) can not be reduced to the single-boson case by
setting k = 0 or l = 0 because of singularity.

Substituting equation (17) into equation (15), thus, satisfaction of the sec-
ond equation of equation (11) requires that ḟ (n̂1, n̂2)ġ(n̂1, n̂2) satisfies the follow-
ing two-variable difference equation

[
k∏

i=1

(n̂1 − i + 1)

] [
l∏

i=1

(n̂2 + i)

]
ḟ (k,l)(n̂1, n̂2)ġ

(k,l)(n̂1, n̂2)

−
[

k∏

i=1

(n̂1 + i)

] [
l∏

i=1

(n̂2 − i + 1)

]
ḟ (k,l)(n̂1 + k, n̂2 − l)ġ(k,l)(n̂1 + k, n̂2 − l)

= C1

(
n̂1

2k
− n̂2

2l
+ α

)
+ C3

(
n̂1

2k
− n̂2

2l
+ α

)3

. (18)

In the process of obtaining the above equation, we have used the fundamental
relations

ak
i f (. . . n̂i . . . ) = f (. . . , n̂i + k, . . . )ak

i , i = 1, 2,

(a+
i )kf (. . . n̂i . . . ) = f (. . . , n̂i − k, . . . )(a+

i )k,
(19)

which follow from equation (5) for any function f (. . . n̂i . . . ).
Note that equation (18) only fixes the product ḟ (n̂1, n̂2)ġ(n̂1, n̂2). Different

choices of the two functions, as well as the constant α, may produce a variety of
realizations for H. However, it is very difficult to obtain the general solutions of
equation (18) for arbitrary k and l. Below will study in more detail the special
case of (k, l) = (1, 1), and give directly the results of the case of (k, l) = (2, 2).

1. The (1,1) case.
Inserting k = l = 1 into equation (18) and solving it, we may obtain the

following two solutions

ḟ
(1,1)

1 (n̂1, n̂2)ġ
(1,1)

1 (n̂1, n̂2) = 1
8n̂1

(n̂1 + 2α){4C1 + C3[n̂1(n̂1 + 4α)

+(n̂2 + 1)2 + (2α + 1)(2α − 1)]}, (20)
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and

ḟ
(1,1)

2 (n̂1, n̂2)ġ
(1,1)

2 (n̂1, n̂2) = 1
8(n̂2 + 1)

(n̂2 − 2α + 1){4C1 + C3[n̂2
1

+n̂2(n̂2 − 4α + 2) + 4α(α − 1)]}. (21)

From them we have some freedom in the choice of the functions ḟ
(1,1)
i (n̂1, n̂2)

(i = 1, 2) and ġ
(1,1)
i (n̂1, n̂2). However here we need only consider the first solu-

tion (20) because of the symmetry between the solutions (20) and (21)

n̂1 ↔ n̂2 + 1 and α ↔ −α.

(1) If the unitary relations need satisfying, i.e.,

Ḃ(1,1)(J±) = (
Ḃ(1,1)(J∓)

)†
, (22)

(Ḃ(1,1)(J3) is already hermitian), which lead to ḟ
(1,1)

1 (n̂1, n̂2) = ġ
(1,1)

1 (n̂1, n̂2), then
solving equation (20) and substituting the expression of ḟ

(1,1)

1 (n̂1, n̂2) into equa-
tion (15), we may obtain

Ḃ
(1,1)

1 (J+) =
{

1
8n̂1

(n̂1 + 2α){4C1 + C3[n̂1(n̂1 + 4α)

+(n̂2 + 1)2 + (2α + 1)(2α − 1)]}
}1/2

a+
1 a2,

Ḃ
(1,1)

1 (J−) = a1a
+
2

{
1

8n̂1
(n̂1 + 2α){4C1 + C3[n̂1(n̂1 + 4α)

+(n̂2 + 1)2 + (2α + 1)(2α − 1)]}
}1/2

,

Ḃ
(1,1)

1 (J3) = 1
2(n̂1 − n̂2) + α.

(23)

It can be easily checked that the realization (23) satisfies equation (11) for arbi-
trary α.

Inserting equation (23) into equation (12), the Casimir invariant C of H
may be expressed in terms of the boson number operators n̂1 and n̂2 as

C = 1
64 (N̂ + 2α)(N̂ + 2α + 2)[8C1 + C3(N̂ + 2α)(N̂ + 2α + 2)], (24)

where N̂ = n̂1 + n̂2 is the total boson number operator. The equation (24) shows
clearly that C depends only on N̂ .

Calculating the expectation value 〈n1n2|C|n1n2〉 and comparing it with the
fourth equation of equation (14), we have

j̃ = 1
2(N + 2α). (25)

The fact that the values of j̃ are half integers (j̃ = 0, 1/2, 1, . . . ) requires α = 0,
thus, the irreducible representation j̃ of H is characterized by the total boson
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number N , namely, j̃ = N/2. The similar conclusion exists for SU(2) [5]. Corre-
spondingly, equation (23) leads to the simplest form

Ḃ
(1,1)

2 (J+) =
√

1
2C1 + 1

8C3[n̂2
1 + n̂2(n̂2 + 2)]a+

1 a2,

Ḃ
(1,1)

2 (J−) = a1a
+
2

√
1
2C1 + 1

8C3[n̂2
1 + n̂2(n̂2 + 2)],

Ḃ
(1,1)

2 (J3) = 1
2(n̂1 − n̂2),

(26)

which may also be obtained by considering the second solution (21) with setting
α = 0. When C1 = 2 and C3 = 0, equation (26) becomes the standard Jordan–
Schwinger realization (3) of SU(2).

Now discuss the properties of the spaces that Ḃ
(1,1)

2 (Jµ) (µ = ±, 3) act on.
We observe that for C3 	= 0 the square-root symbols appear in the two-boson
realization (26), which is analogous to the Holstein–Primakoff single-boson real-
ization of SU(2) [22]. The acting spaces of Ḃ

(1,1)

2 (Jµ) may be certain subspaces
of the Fock space F = {|n1n2〉 | n1, n2 = 0, 1, 2, . . . }, in which n1 and n2 need
limiting in order that the values of the square roots appeared in the matrix ele-
ments 〈n1 ± 1n2 ∓ 1|Ḃ(1,1)

2 (J±)|n1n2〉 must be greater than or equal to zero. For
the realization (26), n1 and n2 have to satisfy the constraint conditions

{
(n1 + 1)2 + n2

2 � 1 − 4C1
C3

,

n2
1 + (n2 + 1)2 � 1 − 4C1

C3
.

(27)

The results of equation (27), which are pertinent to the relative signs of C1 and
C3, may be put into the following two categories.

(A) If C1 has the same sign as C3, then equation (27) always holds so
that the acting space of Ḃ

(1,1)

2 (Jµ) is the whole Fock space F . In F , the
infinite-dimensional nullspaces of Ḃ

(1,1)

2 (J+) and Ḃ
(1,1)

2 (J−) are

{|n1 0〉 | n1 = 0, 1, . . . } and {|0 n2〉 | n2 = 0, 1, . . . } ,

respectively, since they satisfy

Ḃ
(1,1)

2 (J+) |n1 0〉 = Ḃ
(1,1)

2 (J−) |0 n2〉 = 0.

Obviously, |00〉 is the common nullspace state of Ḃ
(1,1)

2 (J+) and Ḃ
(1,1)

2 (J−)

(B) If the sign of C1 is opposite to that of C3, then the values of n1 and
n2 are limited by equation (27). Consider first that n1 takes independently val-
ues, then the smallest value that n2 may take, which depends on n1, should be
ζ1(n1) ≡

[√
1 − 4C1/C3 − (n1 + 1)2

]
, where the symbol [x] for a real number x

means taking an integer greater than x, so that the acting space of Ḃ
(1,1)

2 (Jµ) is

V̇1 =
η⋃

n1=0

V̇1(n1) ⊂ F,
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where

V̇1(n1) ≡ {|n1, ζ1(n1) + i〉 | i = 0, 1, . . . }, η ≡
[√

1 − 4C1/C3

]
− 1.

In V̇1, V̇1(0) is the infinite-dimensional nullspace of Ḃ
(1,1)

2 (J−) since all the
states in V̇1(0) satisfy Ḃ

(1,1)

2 (J−)|0, ζ1(0) + i〉 = 0 (i = 0, 1, . . . ). The subspace
{|n1, ζ1(n1)〉 | n1 = 0, 1, . . . , η} in V̇1 is the (η + 1)-dimensional nullspace of
Ḃ

(1,1)

2 (J+), which satisfies Ḃ
(1,1)

2 (J+)|n1, ζ1(n1)〉 = 0. Moreover, |0, ζ1(0)〉 is the
common nullspace state of Ḃ

(1,1)

2 (J+) and Ḃ
(1,1)

2 (J−).
In view of the simple symmetry n1 ↔ n2 between the two equations

of equation (27), if n2 takes independently values, then the smallest value of
n1 should be ζ2(n2) ≡

[√
1 − 4C1/C3 − (n2 + 1)2

]
, hence the acting space of

Ḃ
(1,1)

2 (Jµ) is

V̇2 =
η⋃

n2=0

V̇2(n2) ≡
η⋃

n2=0

{|ζ2(n2) + i, n2〉 | i = 0, 1, . . . } ⊂ F .

In V̇2, V̇2(0) is the infinite-dimensional nullspace of Ḃ
(1,1)

2 (J+), {|ζ2(n2), n2〉 |n2 =
0, 1, . . . , η} is the (η+1)-dimensional nullspace of Ḃ

(1,1)

2 (J−), and |ζ2(0), 0〉 is the
common nullspace state of Ḃ

(1,1)

2 (J+) and Ḃ
(1,1)

2 (J−).
(2) If the unitary relations need not satisfying, it follows from equation (20)

that the conventional choice ġ
(1,1)

1 (n̂1, n̂2) = 1 (or ḟ
(1,1)

1 (n̂1, n̂2) = 1) may imme-
diately give rise to a nonunitary two-boson realization

Ḃ
(1,1)

3 (J+) = 1
8n̂1

(n̂1 + 2α){4C1 + C3[n̂1(n̂1 + 4α)

+(n̂2 + 1)2 + (2α + 1)(2α − 1)]}a+
1 a2,

Ḃ
(1,1)

3 (J−) = a1a
+
2 ,

Ḃ
(1,1)

3 (J3) = 1
2(n̂1 − n̂2) + α.

(28)

In terms of equation (28), the Casimir invariant C, equation (12), of H has the
same expression as equation (24). So taking α = 0 in equation (28) leads to

Ḃ
(1,1)

4 (J+) = { 1
2C1 + 1

8C3[n̂2
1 + n̂2(n̂2 + 2)]

}
a+

1 a2,

Ḃ
(1,1)

4 (J−) = a1a
+
2 ,

Ḃ
(1,1)

4 (J3) = 1
2(n̂1 − n̂2).

(29)

Different from the unitary realization (26), no square-root symbols appear in the
above nonunitary realization (29), hence, it may not only avoid the convergence
questions associated with the expansion of square-root operator but also make
the values of n1 and n2 in {|n1n2〉} unlimited, i.e., the acting space of Ḃ

(1,1)

4 (Jµ)

is the whole Fock space. Taking especially C1 = 2 and C3 = 0, equation (29)
gives an unitary realization of SU(2), i.e., the Jordan–Schwinger realization (3),
while taking C1 = −2 and C3 = 0, equation (29) does a nonunitary realization
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of SU(1,1). We notice that for C3 	= 0 the two-boson realization (29) is in fact
analogous to the Dyson single-boson realization of SU(2) [23].

(3) Another nonunitary realization may be obtained by choosing ġ(n̂1, n̂2) =
ḟ (n̂1 − 1, n̂2 + 1) and α = 0 in equation (20) as

Ḃ
(1,1)

5 (J+) = ḟ (n̂1, n̂2)a
+
1 a2,

Ḃ
(1,1)

5 (J−) = ḟ (n̂1, n̂2)a1a
+
2 ,

Ḃ
(1,1)

5 (J3) = 1
2(n̂1 − n̂2),

(30)

where ḟ (n̂1, n̂2) satisfies

8ḟ (n̂1, n̂2) = {
4C1 + C3[n̂2

1 + n̂2(n̂2 + 2)]
}
ḟ −1(n̂1 − 1, n̂2 + 1). (31)

Note that here Ḃ
(1,1)

5 (J±) 	= (Ḃ
(1,1)

5 (J∓))† for the real function ḟ (n̂1, n̂2). We call
equation (30) a constrained nonunitary realization since Ḃ

(1,1)

5 (J+) and Ḃ
(1,1)

5 (J−)

utilize the same function ḟ (n̂1, n̂2). With the help of equation (7), solving equation
(31) gives rise to

ḟ (n̂1, n̂2) = exp
{
(−1)n̂1−1

[
−�̇−−

1 (N̂) + �̇−−
3 (N̂) − �̇−+

1 (N̂) + �̇−+
3 (N̂)

+ (−1)n̂1

(
�̇+−

1 (M̂) − �̇+−
3 (M̂) + �̇++

1 (M̂) − �̇++
3 (M̂)

)

+ 1
2

ln(C3)[1 − (−1)n̂1 ] + v̇(N̂)

]}
, (32)

where v̇(N̂) is an arbitrary function of N̂ , and

�̇±±
k (x̂) ≡ ln

{
�

[
1
4

(
k ± x̂ ±

√
−8C1/C3 − (N̂2 + 2N̂ − 1)

)]}
(33)

in which the order of two superscripts ±± of �̇ is the same as that of them
appearing in the equation of r.h.s., and �[a(N̂)] is an operator function, whose
expectation value in F in fact is the ordinary Gamma function �[a(N)] for the
real number a(N), i.e.,

〈n1n2| �[a(N̂)] |n1n2〉 = �[a(N)]. (34)

Different from the nonunitary realization (29), this nonunitary realization (30)
may not be reduced to the Jordan–Schwinger realization (3) of SU(2) since in
equations (32) and (33) C3 can not take zero.

It will be verified later that the nonunitary realizations (29) and (30) may
be connected with the unitary realization (26) by similarity transformations.
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2. The (2, 2) case.

Setting k = l = 2 in equation (18) and taking α = 0 into account, we may
obtain two solutions. One of them is given by

ḟ
(2,2)

1 ġ
(2,2)

1 = [128(n̂1 − X+
1 (n̂1)/2)(n̂2 + 1)(n̂2 + 2)]−1

×(n̂2 + X+
3 (n̂1)/2){16C1 + C3[n̂2

1 − X−
1 (n̂1)(n̂1 + 1)

+n̂2(n̂2 + X+
3 (n̂1))]}, (35)

where

X±
k (n̂1) ≡ k ± (−1)n̂1 . (36)

Another solution may be directly get from equation (35) by considering the
symmetry n̂1 ↔ n̂2. In the same way as discussing the (1, 1) case, in terms of
equation (35), we may obtain the unitary two-boson realization of quadratic type

Ḃ
(2,2)

1 (J+) = [128(n̂1 − X+
1 (n̂1)/2)(n̂2 + 1)(n̂2 + 2)]−1/2

×{(n̂2 + X+
3 (n̂1)/2){16C1 + C3[n̂2

1 − X−
1 (n̂1)(n̂1 + 1)

+n̂2(n̂2 + X+
3 (n̂1))]}}1/2(a+

1 )2a2
2,

Ḃ
(2,2)

1 (J−) = a2
1(a

+
2 )2[128(n̂1 − X+

1 (n̂1)/2)(n̂2 + 1)(n̂2 + 2)]−1/2

×{(n̂2 + X+
3 (n̂1)/2){16C1 + C3[n̂2

1 − X−
1 (n̂1)(n̂1 + 1)

+n̂2(n̂2 + X+
3 (n̂1))]}}1/2,

Ḃ
(2,2)

1 (J3) = 1
4 (n̂1 − n̂2)

(37)

and the nonunitary two-boson realization of quadratic type

Ḃ
(2,2)

2 (J+) = [128(n̂1 − X+
1 (n̂1)/2)(n̂2 + 1)(n̂2 + 2)]−1

×{(n̂2 + X+
3 (n̂1)/2){16C1 + C3[n̂2

1 − X−
1 (n̂1)(n̂1 + 1)

+n̂2(n̂2 + X+
3 (n̂1))]}}(a+

1 )2a2
2,

Ḃ
(2,2)

2 (J−) = a2
1(a

+
2 )2,

Ḃ
(2,2)

2 (J3) = 1
4 (n̂1 − n̂2).

(38)

We observe that the unitary realization (37) is explicitly different from that
of [18], in which J± and J3 are first defined as J+ = (a+

1 )kal
2, J− = ak

1(a
+
2 )l and

J3 = (n̂1 − n̂2)/(k + l), however, in order to generate H the unique nontrivial
choice is k = l = 2, combined with the coefficient of J 3

3 , in the commutator
[J+, J−], being the fixed number −64, and the coefficient of J3 in fact being the
operator function of N̂ . However, the realization defined by equation (15) allows
the arbitrary powers and the corresponding constant coefficients.
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3.2. The second kind of realizations

In analogy with the Jordan–Schwinger realization (4) of SU(1,1), the sec-
ond kind of two-boson realizations of H may be constructed in the following
scheme:

B̈(k,l)(J+) = f̈ (n̂1, n̂2)(a
+
1 )k(a+

2 )l,

B̈(k,l)(J−) = ak
1a

l
2 g̈(n̂1, n̂2),

B̈(k,l)(J3) = ḧ(n̂1, n̂2),

(39)

where k and l are positive integers, the operator functions f̈ (n̂1, n̂2), g̈(n̂1, n̂2)

and ḧ(n̂1, n̂2) have to be determined by the commutation relations (11) of H.
Acting B̈(k,l)(J±) for a fixed (k, l) on some basis vector |n1n2〉 of F produces
another basis vector |n1 ± k, n2 ± l〉.

It follows that inserting equation (39) into the first equation of equation
(11) leads to the difference equation

ḧ(n̂1, n̂2) − ḧ(n̂1 − k, n̂2 − l) = 1. (40)

Its solution reads

ḧ(n̂1, n̂2) = n̂1

2k
+ n̂2

2l
+ β, (41)

where the real constant β will be determined later.
Using equation (41), in order to satisfy the second equation of equation

(11), the following difference equation must hold:
[

k∏

i=1

(n̂1 − i + 1)

] [
l∏

i=1

(n̂2 − i + 1)

]
f̈ (k,l)(n̂1, n̂2)g̈

(k,l)(n̂1, n̂2)

−
[

k∏

i=1

(n̂1 + i)

] [
l∏

i=1

(n̂2 + i)

]
f̈ (k,l)(n̂1 + k, n̂2 + l)g̈(k,l)(n̂1 + k, n̂2 + l)

= C1

(
n̂1

2k
+ n̂2

2l
+ β

)
+ C3

(
n̂1

2k
+ n̂2

2l
+ β

)3

. (42)

Just like the first kind of realizations discussed in the last subsection, in
what follows, we will study the case of (k, l) = (1, 1), and give directly the results
of (k, l) = (2, 2).

1. The (1,1) case.
Solving equation (42) with setting k = l = 1, we have two solutions:

f̈
(1,1)

1 (n̂1, n̂2)g̈
(1,1)

1 (n̂1, n̂2) = − 1
8n̂1

(n̂1 + 2β − 1){4C1 + C3[n̂1(n̂1 + 4β − 2)

+n̂2
2 + 4β(β − 1)]}, (43)
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and

f̈
(1,1)

2 (n̂1, n̂2)g̈
(1,1)

2 (n̂1, n̂2) = − 1
8n̂2

(n̂2 + 2β − 1){4C1 + C3[n̂2
1 + n̂2(n̂2 + 4β − 2)

+4β(β − 1)]}. (44)

Between the two solutions there exists explicitly the symmetry: n̂1 ↔ n̂2, so we
need merely to consider the solution (43).

(1) If the unitary relations B̈(1,1)(J±) = (B̈(1,1)(J∓))† are imposed, namely,
f̈

(1,1)

1 (n̂1, n̂2) = g̈
(1,1)

1 (n̂1, n̂2), then solving equation (43) and substituting it into
equation (39), we obtain

B̈
(1,1)

1 (J+) = {− 1
8n̂1

(n̂1 + 2β − 1){4C1 + C3[n̂1(n̂1 + 4β − 2)

+n̂2
2 + 4β(β − 1)]}}1/2a+

1 a+
2 ,

B̈
(1,1)

1 (J−) = a1a2{− 1
8n̂1

(n̂1 + 2β − 1){4C1 + C3[n̂1(n̂1 + 4β − 2)

+n̂2
2 + 4β(β − 1)]}}1/2,

B̈
(1,1)

1 (J3) = 1
2(n̂1 + n̂2) + β.

(45)

Substituting equation (45) into equation (12), the Casimir invariant C of H
may be expressed in terms of n̂1 and n̂2 as

C = 1
64 (M̂ + 2β − 2)(M̂ + 2β)[8C1 + C3(M̂ + 2β − 2)(M̂ + 2β)], (46)

where M̂ = n̂1 − n̂2 or n̂2 − n̂1 is the number difference operator for two kinds
of different bosons, while in equation (24), the boson number sum operator, i.e.,
the total boson number operator N̂ , appears. Calculating 〈n1n2|C|n1n2〉 and then
comparing it with the forth equation of equation (15) gives

j̃ = 1
2(M + 2β − 2) or j̃ = 1

2(M − 2β), (47)

where M = n1 −n2 or n2 −n1 is the eigenvalue of M̂. The symmetry requires that
β = 1/2, thus, the irreducible representation j̃ of H are related to M through
the equation j̃ = 1

2(M − 1). SU(1,1) has the similar result [5]. Correspondingly,
equation (45) becomes

B̈
(1,1)

2 (J+) =
√

− 1
2C1 − 1

8C3(n̂
2
1 + n̂2

2 − 1)a+
1 a+

2 ,

B̈
(1,1)

2 (J−) = a1a2

√
− 1

2C1 − 1
8C3(n̂

2
1 + n̂2

2 − 1),

B̈
(1,1)

2 (J3) = 1
2(n̂1 + n̂2 + 1).

(48)

Thus, for C3 	= 0 the spaces that the operators B̈
(1,1)

2 (Jµ) (µ = ±, 3) act on may
be certain subspaces of the Fock space F = {|n1n2〉 |n1, n2 = 0, 1, 2, . . . }, that is,
n1 and n2 need limiting in order that the values of the square roots appeared in
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the matrix elements 〈n1 ± 1n2 ± 1|B̈(1,1)

2 (J±)|n1n2〉 must be greater than or equal
to zero. For the realization (48), n1 and n2 have to satisfy the constraint equation

n2
1 + n2

2 � 1 − 4
C1

C3
, (49)

whose results are listed as follows.
(A) If C1 � C3/4, then equation (49) always holds, so that the acting space

of B̈
(1,1)

2 (Jµ) is the whole Fock space F , in which

{|0 n2〉 | n2 = 0, 1, 2, . . . } and {|n1 0〉 | n1 = 0, 1, 2, . . . }
are the infinite-dimensional nullspaces of B̈

(1,1)

2 (J−), since they satisfy

B̈
(1,1)

2 (J−)|0 n2〉 = B̈
(1,1)

2 (J−)|n1 0〉 = 0.

(B) If C1 < C3/4, then the values of n1 and n2 need limiting. First consider
that n1 takes independently values, then the values that n2 may take are dependent

on n1, especially, its smallest values should be κ1(n1) ≡
[√

1 − 4C1/C3 − n2
1

]
for

the given n1. As a result, the acting subspace of B̈
(1,1)

2 (Jµ) is

V̈1 =
λ⋃

n1=0

V̈1(n1),

where

V̈1(n1) ≡ {|n1, κ1(n1) + i〉 | i = 0, 1, . . . }, λ ≡
[√

1 − 4C1/C3

]
− 1.

In V̈1, B̈
(1,1)

2 (J−) has an infinite-dimensional nullspace V̈1(0) and a λ-dimensional
nullspace {|n1, κ1(n1)〉 | n1 = 1, 2, . . . , λ}.

Secondly, n2 takes independently values, by means of the symmetry n1 ↔ n2

of equation (49), then the smallest value of n1 is κ2(n2) ≡
[√

1 − 4C1/C3 − n2
2

]
,

so that the acting space of B̈
(1,1)

2 (Jµ) is

V̈2 =
λ⋃

n2=0

V̈2(n2) ≡
λ⋃

n2=0

{|κ2(n2) + i, n2〉 | i = 0, 1, . . . }.

Obviously, in V̈2, V̈2(0) and {|κ2(n2), n2〉 | n2 = 1, 2, . . . , λ} are the nullspaces of
B̈

(1,1)

2 (J−) with infinite-dimension and λ-dimension, respectively.
However, for the second kind of realization (48), B̈

(1,1)

2 (J+) and B̈
(1,1)

2 (J−)

have no the common nullspace state.
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(2) If the unitary relations need not satisfying, it follows from equation (45)
that the conventional choice g̈(1,1)(n̂1, n̂2) = 1 (or f̈ (1,1)(n̂1, n̂2) = 1) results in the
following nonunitary two-boson realization

B̈
(1,1)

3 (J+) = − 1
8n̂1

(n̂1 + 2β − 1){4C1 + C3[n̂1(n̂1 + 4β − 2)

+n̂2
2 + 4β(β − 1)]}a+

1 a+
2 ,

B̈
(1,1)

3 (J−) = a1a2,

B̈
(1,1)

3 (J3) = 1
2(n̂1 + n̂2) + β.

(50)

Taking β = 1/2, equation (50) becomes

B̈
(1,1)

4 (J+) = − [ 1
2C1 + 1

8C3(n̂
2
1 + n̂2

2 − 1)
]
a+

1 a+
2 ,

B̈
(1,1)

4 (J−) = a1a2,

B̈
(1,1)

4 (J3) = 1
2(n̂1 + n̂2 + 1).

(51)

When C1 = −2 and C3 = 0, equation (51), together with equation (48), recovers
the unitary Jordan–Schwinger realization (4) of SU(1,1).

(3) Choosing g̈(n̂1, n̂2) = f̈ (n̂1 −1, n̂2 −1) and β = 1/2 in equation (44), we
may obtain another constrained nonunitary realization

B̈
(1,1)

5 (J+) = f̈ (n̂1, n̂2)a
+
1 a+

2 ,

B̈
(1,1)

5 (J−) = f̈ (n̂1, n̂2)a1a2,

B̈
(1,1)

5 (J3) = 1
2(n̂1 + n̂2 + 1),

(52)

where f̈ (n̂1, n̂2) obeys

8f̈ (n̂1, n̂2) = − [
4C1 + C3(n̂

2
1 + n̂2

2 − 1)
]
f̈ −1(n̂1 − 1, n̂2 − 1), (53)

whose solution is

f̈ (n̂1, n̂2) = exp
{
(−1)n̂1−1

[
−�̈−−

2 (M̂) + �̈−−
4 (M̂) − �̈−+

2 (M̂) + �̈−+
4 (M̂)

+ (−1)n̂1

(
�̈+−

2 (N̂) − �̈+−
4 (N̂) + �̈++

2 (N̂) − �̈++
4 (N̂)

)

+ 1
2
(ln(C3) + iπ)[1 − (−1)n̂1 ] + v̈(M̂)

]}
, (54)

where v̈(M̂) is an arbitrary function of M̂, and

�̈±±
k (x̂) ≡ ln

{
�

[
1
4

(
k ± x̂ ±

√
−8C1/C3 − (M̂2 − 2)

)]}
, (55)

in which �[a(N̂)] has been defined by equation (34). The nonunitary realization
(52) can not become the Jordan–Schwinger realization (4) of SU(1,1) on account
of the singularity of C3 in equations (54) and (55).

We notice that all the nonunitary realizations, (29), (30), (51) and (52),
obtained above are different from the inhomogeneous two-boson realizations
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obtained in [24] by using the boson mapping method based upon the induced
representations of H on the quotient spaces U(H)/Ii (i = 1, 2), where U(H) is
the universal enveloping algebra of H and Ii are two left ideals with respect to
U(H).

2. The (2, 2) case.
Equation (42) with setting k = l = 2 and β = 1/2 has two solutions, the

first one is given by

f̈
(2,2)

1 g̈
(2,2)

1 = [128(n̂1 − 1)n̂1(n̂2 − 1)n2]−1(n̂1 + X−
1 (n̂1)/2)

×(n̂2 + 2 − X−
5 (n̂1)/2){16C1 + C3[X−

1 (n̂1)(n̂1 + 3) + n̂2
1

+n̂2(n̂2 + 4 + X+
3 (n̂1)) + 2(2 − X+

3 (n̂1))]}, (56)

where the symbol X±
k (n̂1) has be defined by equation (36). The second solution

may be directly obtained from equation (56) by the substitutions n̂1 → n̂2 and
n̂2 → n̂1. Solving equation (56) by considering respectively the unitary and nonu-
nitary conditions, and then inserting them into equation (39), we may obtain for
H the unitary two-boson realization of quadratic type

B̈
(2,2)

1 (J+) = [128(n̂1 − 1)n̂1(n̂2 − 1)n2]−1/2[n̂1 + X−
1 (n̂1)/2]

×[n̂2 + 2 − X−
5 (n̂1)/2]{16C1 + C3[X−

1 (n̂1)(n̂1 + 3) + n̂2
1

+n̂2(n̂2 + 4 + X+
3 (n̂1)) + 2(2 − X+

3 (n̂1))]}1/2(a+
1 )2(a+

2 )2,

Ḃ
(2,2)

1 (J−) = a2
1a

2
2 [128(n̂1 − 1)n̂1(n̂2 − 1)n2]−1/2[n̂1 + X−

1 (n̂1)/2]
×[n̂2 + 2 − X−

5 (n̂1)/2]{16C1 + C3[X−
1 (n̂1)(n̂1 + 3) + n̂2

1
+n̂2(n̂2 + 4 + X+

3 (n̂1)) + 2(2 − X+
3 (n̂1))]}1/2,

Ḃ
(2,2)

1 (J3) = 1
4 (n̂1 + n̂2 + 2)

(57)

and the nonunitary two-boson realization of quadratic type

B̈
(2,2)

2 (J+) = [128(n̂1 − 1)n̂1(n̂2 − 1)n2]−1[n̂1 + X−
1 (n̂1)/2]

×[n̂2 + 2 − X−
5 (n̂1)/2]{16C1 + C3[X−

1 (n̂1)(n̂1 + 3) + n̂2
1

+n̂2(n̂2 + 4 + X+
3 (n̂1)) + 2(2 − X+

3 (n̂1))]}(a+
1 )2(a+

2 )2,

Ḃ
(2,2)

2 (J−) = a2
1a

2
2,

Ḃ
(2,2)

2 (J3) = 1
4 (n̂1 + n̂2 + 2).

(58)

4. Unitarization equations and similarity transformations

In the last section, the two kinds of two-boson realizations of H are con-
structed, and in each kind, one unitary realization and two different nonunitary
realizations are discussed, respectively. In this section, we will show that the uni-
tary realizations and the nonunitary realizations in the same kind may be con-
nected by similarity transformations.

Let us begin with discussing the general procedure. Denote the unitary
boson realization and the nonunitary boson realization by Bu(Jµ) (µ = ±, 3)
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and Bnu(Jµ), respectively, and the corresponding similarity transformation by S,
then we have

SBnu(Jµ)S−1 = Bu(Jµ). (59)

Hence, S in general is an operator function with respect to the boson operators
and the particle number operators.

Using equation (59) and the unitary conditions satisfied by Bu(Jµ)

(Bu(J±))† = Bu(J∓),

(Bu(J3))
† = Bu(J3),

(60)

it follows that we may obtain the following unitarization equations obeyed by
Bnu(Jµ)

U−1 (Bnu(J±))† U = Bnu(J∓),

U−1 (Bnu(J3))
† U = Bnu(J3),

(61)

where U ≡ S†S is an Hermitian operator. The similarity transformation S may
be obtained by solving equation (61) in the Fock space.

We observe from the two-boson realizations (29), (30), (51) and (52)
obtained in the last section that Ḃ

(1,1)

4 (J3), Ḃ
(1,1)

5 (J3), B̈
(1,1)

4 (J3) and B̈
(1,1)

5 (J3)

in fact are already Hermitian, so equation (59) implies that the corresponding
similarity transformations commute with J3, in other words, they depend only
on the particle number operators, n̂1 and n̂2.

Now let us seek the similarity transformations S1 and S2 that correspond
to the nonunitary realizations (29) and (51), respectively. Calculating the matrix
elements of the unitarization equations (see equation (61)) satisfied respectively
by Ḃ

(1,1)

4 (J−) and B̈
(1,1)

4 (J−) in the Fock space F , and using equations (29) and
(51), we may deduce the recurrent equations satisfied by the expectation values
Si(n1, n2) ≡ 〈n1n2|Si |n1n2〉 (i = 1, 2),

{
4C1 + C3[n2

1 + n2(n2 + 2)]
}
S1(n1, n2)

2 = 8S1(n1 − 1, n2 + 1)2, (62)

and
[
4C1 + C3(n

2
1 + n2

2 − 1)
]
S2(n1, n2)

2 = −8S2(n1 − 1, n2 − 1)2. (63)

Solving equations (62) and (63), and then using equation (7), we obtain

S1(n̂1, n̂2) =
√

(C3/4)1−n̂1ẇ(N̂)

(Ż(N̂)+)n̂1−1(Ż(N̂)−)n̂1−1

, (64)

and

S2(n̂1, n̂2) =
√

− (−1)n̂1(C3/4)1−n̂1ẅ(M̂)

(Z̈(M̂)+)n̂1−1(Z̈(M̂)−)n̂1−1

, (65)
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respectively. In the above two equations, the minus signs out of the square-root
symbols have been omitted without loss of generality, ẇ(N̂) and ẅ(M̂) are arbi-
trary functions with respect to the sum operator N̂ and the difference operator
M̂, respectively,

Ż(N̂)± ≡ 1
2

[
3 − N̂ ±

√
−8C1/C3 − (N̂2 + 2N̂ − 1)

]
, (66)

Z̈(M̂)± ≡ 1
2

[
4 − M̂ ±

√
−8C1/C3 − (M̂2 − 2)

]
, (67)

and the symbol (Z(N̂))n̂i
in denominators stands for an operator function of N̂

and n̂i , whose expectation value in F is the usual Pochhammer symbol (Z(N))ni

for the real number Z(N) and the positive integer ni , i.e.,

〈n1n2| (Z(N̂))n̂i
|n1n2〉 = Z(N)[Z(N) + 1] . . . [Z(N) + ni − 1] ≡ (Z(N))ni

. (68)

For the constrained nonunitary realizations (30) and (52), there must exist
the corresponding similarity transformations S̄1 and S̄2, which connect equation
(30) with equation (26), and equation (52) with equation (48), respectively. Using
the same calculating method, we may obtain

S̄1(n̂1, n̂2) =
√

8

4C1 + C3[n̂2
1 + n̂2(n̂2 + 2)]

, (69)

and

S̄2(n̂1, n̂2) =
√

− 8

4C1 + C3(n̂
2
1 + n̂2

2 − 1)
. (70)

5. Some applications

In this section, as applications, we shall apply the results obtained previ-
ously to discussing the dynamical symmetry of the Kepler system in the two-
dimensional curved space and to constructing phase operators of H.

5.1. Dynamical symmetry of the Kepler system in the two-dimensional curved
space

The key idea of dynamical symmetry is that the Hamiltonian describ-
ing some quantum system can be constructed in terms of the Casimir invar-
iants, C(g1), C(g2), . . . , of a chain of algebras g1 ⊃ g2 ⊃ . . . . [25]. The
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most famous example of the dynamical symmetry is the nonrelativistic hydro-
gen atom, [26] whose Hamiltonian H c can be expressed by the first quadratic
Casimir invariant, C(SO(4)), of the SO(4) algebra, which is spanned by the
three components of the angular momentum J and the three components of the
Runge–Lentz–Laplace vector R, as H c ∼ [C(SO(4))+1]−1. As mentioned in Sec-
tion 1, Higgs has showed that the Kepler system in the two-dimensional curved
space is governed by the Higgs algebra H, and however, he applied the SO(3)
algebra to calculate its energy levels. In this subsection, we will show that the
Hamiltonian H of this Kepler system may be naturally related to the Casimir
invariant C of H, and then obtain directly the energy levels of H by using the
eigenvalue of C.

The Hamiltonian of the Kepler system in the two-dimensional curved space
has the following expression [8]

H = 1
2

(
πiπi + λJ 2

3

) − µ

r
, (71)

where λ is the curvature of the sphere, µ is a constant number, J3 is a
two-dimensional rotation operator, and πi (i = 1, 2), the two components of the
momentum operator 
π in the two-dimensional curved space, are defined by

πi = pi − λ

2
{xi, (x · p)} , (72)

where { , } is the usual anticommutator, pi = −∂xi
(i = 1, 2) are the two com-

ponents of the ordinary momentum operator p conjugate to x, respectively.
This system possess three constants of motion: one is J3, the remaining

two are the two components of the Runge–Lentz–Laplace vector R in
the two-dimensional curved space, which, in analogy with those in the
three-dimensional flat space, [5,26] may be constructed as

Ri = 1
2
{J3, εijπj } + µ

xi

r
, i = 1, 2, (73)

where εij is the two-dimensional Levi–Civita symbol.
It can be easily verified that J3 and R± = R1 ± iR2 satisfy

[J3, R±] = ±R±,

[R+, R−] = (
λ
2 − 4H

)
J3 + 4λJ 3

3 ,
(74)

and

{R+, R−} = 2µ2 + (
2H − λJ 2

3

) (
2J 2

3 + 1
2

) − 2λJ 2
3 . (75)

If the state vector space on which equation (74) is allowed to act is the energy ei-
genspace, then the Hamiltonian H in equation (74) may be replaced by the cor-
responding energy eigenvalue E, as the result, equation (74) can be put in the
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form of the Higgs algebra, equation (11), with

C1 = 1
2λ − 4E, C3 = 4λ. (76)

Using equations (12), (74) and (75), as expected, there indeed exists a sim-
ple relation between H and the Casimir invariant C of H, i.e.

H = 2(C − µ2). (77)

It follows that calculation of the expectation value of equation (77) in the Fock
space F , with the help of equation (24) with setting α = 0 and equation (76),
leads immediately to the following equation satisfied by E

E = −2µ2 + (−E + 1
8λ

)
N(N + 2) + 1

8λN2(N + 2)2, (78)

whose solution reads

EN = λ

8
N(N + 2) − 2µ2

(N + 1)2
. (79)

This result may also be obtained by using the Casimir invariant (46) of H in the
second kind of two-boson realizations. Owing to the fact that EN depends only
to N rather than n1 and n2, the degeneracy of the energy level for the fixed N

is N + 1. The physical condition that the quantum number m̃(= 1
2(n1 − n2)) of

J3 must be the nonnegative integers requires that N(= 1
2(n1 + n2)) has to take

the nonnegative even numbers, i.e., 0, 2, 4, . . . . If let N = 2n (n = 0, 1, 2, . . . ),

then equation (79) becomes the result (53) of [8]. If the two parameters λ and µ

in equation (79) satisfy the following condition

µ2

λ
= l

(
l + 1

2

)2
(l + 1), (80)

where l is some positive integer, then a zero energy level appears at N = 2l, i.e.,
E2l = 0, while there exist l bounded states, E2i < 0 (i = 0, 1, . . . , l − 1), and
infinite scattering states, E2j > 0 (j = l + 1, l + 2, . . . ).

5.2. Phase operators of H

It is well known that the photon phase operators, introduced originally by
Dirac [27] and amended by Susskind and Glogower [28], may be defined in terms
of one set of boson operator {a+

1 , a1, n̂1} as [29]

exp(iφ1) = 1√
n̂1+1

a1,

exp(−iφ1) = a+
1

1√
n̂1+1

= (exp(iφ1))
†.

(81)
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It is easily shown that the above two operators satisfy

exp(iφ1)|n1〉 = (1 − δn10)|n1 − 1〉,
exp(−iφ1)|n1〉 = |n1 + 1〉, (82)

and

(exp(−iφ1))
† exp(−iφ1) = 1,

exp(−iφ1)(exp(−iφ1))
† = 1 − |0〉〈0|, (83)

hence, we call exp(±iφ1) semiunitary operators. If introduce the following two
Hermitian phase operators

cos φ1 = 1
2 [exp(iφ1) + exp(−iφ1)],

sin φ1 = 1
2i [exp(iφ1) − exp(−iφ1)],

(84)

then, they, together with n̂1, satisfy

[n̂1, cos φ1] = −i sin φ1,

[n̂1, sin φ1] = i cos φ1.
(85)

For the Higgs algebra H, making use of the first kind of two-boson reali-
zation, equation (26), we may construct the following two operators

E+ = 2√
n̂1+1

Ḃ
(1,1)

2 (J−) 1√
(n̂2+1)[2C1+C3n̂1(n̂2+1)]

,

E− = 2√
(n̂2+1)[2C1+C3n̂1(n̂2+1)]

Ḃ
(1,1)

2 (J+) 1√
n̂1+1

= (E+)†.
(86)

We call E± the phase operators of H, since action of E± on the eigenvector |j̃ m̃〉,
using equations (9), (10), (14) and (26), leads to

E+|j̃ m̃〉 = (1 − δ−j̃ m̃)|j̃ m̃ − 1〉,
E−|j̃ m̃〉 = (1 − δj̃m̃)|j̃ m̃ + 1〉. (87)

When C1=2 and C3=0, equation (86) becomes the phase operators of the angular
momentum system [30]. Note that equation (87) is in fact the same as the equation
satisfied by the phase operators of the angular momentum system.

Using equation (81), equation (86) can also be written in the following form

E+ = exp[i(φ1 − φ2)]w(n̂1, n̂2),

E− = w(n̂1, n̂2) exp[−i(φ1 − φ2)],
(88)

where exp[±i(φ1 − φ2)] are the ordinary phase difference operators of
two-dimensional harmonic oscillator, i.e.,

exp[i(φ1 − φ2)] = 1√
n̂1+1

a1a
+
2

1√
n̂2+1

,

exp[−i(φ1 − φ2)] = 1√
n̂2+1

a2a
+
1

1√
n̂1+1

,
(89)
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and the operator function w(n̂1, n̂2) is given by

w(n̂1, n̂2) = 2ḟ
(1,1)

1 (n̂1, n̂2)√
2C1 + C3n̂1(n̂2 + 1)

=
√

4C1 + C3[n̂2
1 + n̂2(n̂2 + 2)]

4C1 + 2C3n̂1(n̂2 + 1)
, (90)

where ḟ
(1,1)

1 (n̂1, n̂2) is the solution of equation (20) with α=0 and ḟ
(1,1)

1 (n̂1, n̂2) =
ġ

(1,1)

1 (n̂1, n̂2). Similar to the definition of nonlinear coherent state [31,32],
w(n̂1, n̂2) exp[−i(φ1 − φ2)] (see equation (88)) may be naturally called as the
nonlinear phase difference operator, which in fact plays the role of amplifying
the phase difference. Thus, equation (88) shows that the phase properties of H
can be described by the nonlinear phase difference operator, while, as we know,
the phase properties of the angular momentum system may be described by the
phase difference operator of the two-dimensional harmonic oscillator [30].

Introduce another pair of Hermitian phase operators

cos � = 1
2(E− + E+),

sin � = 1
2i(E− − E+),

(91)

it is easy to get

[J3, cos �] = −i sin �,

[J3, sin �] = i cos �,
(92)

which is similar to equation (85).

6. Conclusions

In this paper we have obtained the explicit expressions for two kinds of
two-boson realizations of the Higgs algebra H by generalizing the well known
Jordan–Schwinger realizations of SU(2) and SU(1,1). In each kind, the unitary
realization, the (constrained) nonunitary realizations of the (1, 1) case, and the
properties of their respective acting spaces have been discussed in detail, together
with the results of the (2, 2) case. The other simple two-boson realizations for
k 	= l, for example, (k, l) = (1, 2), (2, 1), etc., have also been obtained by solving
equation (18) and (42), however, they are not given here because of their com-
plex expressions. It is worth mentioning that for equation (16) in the first kind of
realizations, its solution (17), which can be found its prototype for SU(2), is not
unique, since, for example, it is determined up to any periodic function T (m) of
an arbitrary but finite period m, namely, the constant α in equation (17) may be
replaced by T (m), and for the (1, 1) case the general solution of equation (16)
should be n̂1 +x(N̂), where x(N̂) is an arbitrary function of N̂(= n̂1 + n̂2). Simi-
lar properties exist for equation (40) in the second kind of realizations. Further-
more, we have revealed the fact that the nonunitary realizations and the unitary
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ones may be related by the similarity transformations, which have been obtained
by solving the corresponding unitarization equations satisfied by the nonunitary
realizations. Finally, as applications, first we have found that the Kepler system
in the two-dimensional curved space may be described by the dynamical group
chain, H ⊃ SO(2), that is, there exists a simple relation between the Hamilto-
nian of this Kepler system and the Casimir operator of H, and then obtained
the energy levels by the eigenvalue of the Casimir invariant. Secondly, we have
constructed the phase operators of the Higgs algebra in terms of the first kind
of two-boson unitary realization, which hold the similar properties as the phase
operators of the ordinary angular momentum systems. Due to the tight rela-
tions between boson operators and differential operators, for example, ai ↔ ∂xi

(i = 1, 2) and a+
i ↔ xi , the two-variable differential realizations of the Higgs

algebra may be obtained directly from the above various two-boson realizations.
The method adopted in this paper may be naturally generalized to the case of
the multi-boson (or the deformed boson, the (deformed) fermion, etc.) and be
used to treat the general PAMA given by equation (1).
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